miR-634 Activates the Mitochondrial Apoptosis Pathway and Enhances Chemotherapy-Induced Cytotoxicity.

نویسندگان

  • Naoto Fujiwara
  • Jun Inoue
  • Tatsuyuki Kawano
  • Kousuke Tanimoto
  • Ken-Ichi Kozaki
  • Johji Inazawa
چکیده

Some tumor-suppressing miRNAs target multiple oncogenes concurrently and therefore may be useful as cancer therapeutic agents. Further, such miRNAs may be useful to address chemotherapeutic resistance in cancer, which remains a primary clinical challenge in need of solutions. Thus, cytoprotective processes upregulated in cancer cells that are resistant to chemotherapy are a logical target for investigation. Here, we report that overexpression of miR-634 activates the mitochondrial apoptotic pathway by direct concurrent targeting of genes associated with mitochondrial homeostasis, antiapoptosis, antioxidant ability, and autophagy. In particular, we show how enforced expression of miR-634 enhanced chemotherapy-induced cytotoxicity in a model of esophageal squamous cell carcinoma, where resistance to chemotherapy remains clinically problematic. Our findings illustrate how reversing miR-634-mediated cytoprotective processes may offer a broadly useful approach to improving cancer therapy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MiR-204 enhances mitochondrial apoptosis in doxorubicin-treated prostate cancer cells by targeting SIRT1/p53 pathway

Chemotherapy is important for adjuvant treatment of prostate cancer. However, some cancer cells exhibited low sensitivity to chemotherapeutic agents. We are supposed to sensitize these prostate cancer cells to chemotherapeutic agents such as doxorubicin. Previous reports have suggested that microRNAs (miRNAs) regulate chemosensitivity in various cancers. In the present study, we observed that e...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

Protective effect of bioactive compounds from Echinophora cinerea against cisplatin-induced oxidative stress and apoptosis in the PC12 cell line

Objective(s): The present study aims to evaluate the protective effect of the compounds isolated from Echinophora cinerea (E. cinerea) against oxidative stress and apoptosis induced by cisplatin (CIS) in PC12 cells. Materials and Methods: Six compounds were isolated as quercetrin-3-O-β-D-glucopyranoside (QUE), osthol (OST), verbenone-5-O-β-D-glycopyranoside (VER), Isoimperatorin (ISO), kaempfer...

متن کامل

MiR-103 alleviates autophagy and apoptosis by regulating SOX2 in LPS-injured PC12 cells and SCI rats

Objective(s): Recent studies revealed that microRNAs (miRNAs) may play crucial roles in the responses and pathologic processes of spinal cord injury (SCI). This study aimed to investigate the effect and the molecular basis of miR-103 on LPS-induced injuries in PC12 cells in vitro and SCI rats in vivo. Materials and Methods: PC12 cells were exposed to LPS to induce cell injuries to mimic the in ...

متن کامل

Morphine-induced apoptosis in PC12 cells: role of Bax and Bcl2

Introduction: It was reported that morphine could induce apoptosis in neurons. However, its specific mechanistic pathways remain elusive. The present study was undertaken to determine whether morphine could induce apoptosis in PC12 cells, a neuronal cell line, and the involvement of Bax and Bcl-2, as upstream factors of mitochondrial pathway. Methods: In an experimental study, the viabili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 75 18  شماره 

صفحات  -

تاریخ انتشار 2015